Verification of Autonomous Systems
Using Embedded Behavior Auditors

Daniel Dvorak and Eric Tailor

Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 301-270, 4800 Oak Grove Drive, Pasadena,
CA 91109-8099
Daniel.Dvorak @jpl.nasa.gov and Eric.Tailor@jpl.nasa.gov

Abstract. The prospect of highly autonomous spacecraft and rovers is exciting for what they can do with onboard
decision making, but also troubling for what they might do [improperly] without human-in-the-loop oversight. The
single biggest obstacle to acceptance of highly autonomous software control systems is doubt about their
trustworthiness as a replacement for human analysis and decision-making. Such doubts can be addressed with a
comprehensive system verification effort, but techniques suitable for conventional sequencer-based systems are
inadequate for reactive systems. This paper highlights some of the key features that distinguish autonomous systems
from their predecessors and then focuses on one approach to aid in their verification using a “lightweight” formal
method. Specifically, we present a little language that enables system engineers and designers to specify expected
behavior in the form of invariants, state machines, episodes, and resource constraints, and a way of compiling such
specifications and linking them into the operational code as embedded behavior auditors. Such auditors become part of
the overall fault-detection design, checking system behavior in real-time, not only in the test-bed but also in flight.

ﬁnm al methects
-+ eners [/ ac((c INTRODUCTION

Autonomous spacecraft operation is becoming a necessity in space missions. The long round-trip light-time delays of
deep space missions preclude earth-in-the-loop control for many mission objectives. Even a 10—40 minute round-trip
delay in controlling a robot on the surface of Mars—a relatively nearby planet—puts a severe limit on the amount of
science data that can be obtained with earth-based control. At the orbit of Saturn the round-trip delay is on the order
of 2.5 hours. Also, without increased autonomy, NASA’s objective of running many concurrent missions would
strain not only the capacity of the deep space communication network but also the budgets needed to support
traditional ground control. Finally, autonomy is an enabler for new mission concepts such as formation flying for
interferometers and self-sufficiency for 100-year interstellar explorers.

Traditional space missions without autonomy are already inherently risky. In an examination of notable accidents
involving complex systems, Perrow identifies two risk dimensions for high-risk technologies: interactions and
coupling (Perrow, 1984). Linear interactions are those in expected and familiar production, and are quite visible even
if unplanned, while complex interactions are those of unfamiliar or unplanned or unexpected sequences, and are
either not visible or not immediately comprehensible. Loosely coupled systems can incorporate shocks and failures
without destabilization, while tightly coupled systems have more time-dependent processes that cannot be delayed or
extended. Perrow’s chart of interactions versus coupling, shown in Figure 1, places space missions in the quadrant of
the diagram depicting the riskiest technologies—those having complex interactions and tight coupling.

For space missions, “autonomy” implies giving a spacecraft or rover authority to make decisions without human-in-
the-loop supervision. Compared to conventional spacecraft controlled by open-loop timed sequencers, autonomous
spacecraft are controlled through many closed-loop goal-achieving modules. Autonomous systems are not only
reactive systems—Ilargely event-driven, continuously reacting to external stimuli and internal events (Harel, 1987)—
but also goal-driven systems exhibiting purposeful behavior. Although these systems are still deterministic, like their
sequencer-based predecessors, they are less predictable from a ground controller’s perspective because they make
decisions based on dynamically changing spacecraft state. This loss of predictability and automation of decision-
making heighten the need for thorough verification and validation.

Linear INTERACTIONS ' Complex

- I
_Q \
k) ® Nuclear plant
~ Power grids '
:
1
Marine transport ! Chemical plants
1
Rail transport | Space missions
|
® |
(25 Airways | Military early-warning
- :
e
-
O .
O Junior college B]
M|I|tarv ctions
Trade schools
Mining
. R&D firms
Most manufacturing
Q
8 Universities
3 Post Office

FIGURE 1. High-risk technologies have complex interactions and tight coupling.

Although the objective in verifying autonomous systems is much the same as for conventional systems—verify
expected behavior and acceptable performance over a wide range of situations—the methods must change to
acknowledge fundamental differences in the control architectures. Transaction-oriented testing methods applied to
uplink/downlink communication on sequencer-based spacecraft don’t fit well on autonomous spacecraft because so
much of the interesting behavior doesn’t appear in the downlink at all. Instead, in autonomous spacecraft the
behavior of onboard closed-loop control systems becomes a focus of verification, so methods are needed to
instrument these control systems and verify that their behaviors stay within specified bounds. It is particularly
important to automate the analysis of these behaviors because manual analysis of multiple concurrent control loops
would be very tedious and error-prone.

The remainder of this paper describes one approach to automating part of the job of verifying autonomous goal-
driven control systems, particularly discrete-event controllers. The approach is based on three elements: a small
language for specifying expected behavior, a compiler and class library for generating embedded runtime behavior
auditors from specifications, and instrumentation of the application code for access by the auditors. The tool
described here automates one part of a verification process; it does not address equally important problems such as
test-case generation or analytic verification via model checking (Lowry, 1997).

RUN-TIME VERIFICATION

In current practice, requirements are levied on software by a variety of people including mission designers and
system engineers. Such requirements are usually expressed in natural language and are not directly usable for testing.
To address that problem we have developed Tspec, a behavior specification language for non-programmers. Tspec
uses a notation that spacecraft system engineers find more intuitive than linear temporal logic. These forms are
compiled into a conventional programming language as embeddable behavior auditors. These behavior auditors are
designed to report not only the occurrence of unexpected events & conditions but also the absence of expected events
& conditions. Auditing is triggered by discrete events such as the updating of a state variable or expiration of a timer.
The kinds of behavior violations detectable with these auditors include conditions like value out-of-range, illegal
state transition, out-of-order event, resource threshold exceeded, state persisted too long, and activity started but
never completed. The focus on discrete-event behavior checks is aimed at detecting failures in decision-based
autonomous control systems; continuous control systems such as attitude control normally include specialized
monitors as part of the spacecraft’s fault protection design that abstract behavior into a few discrete states.

The auditors are not part of some temporary test scaffold; rather, they are embedded with mission software. This
gives them access to potentially all software state variables and therefore they can check virtually any flight rule, not
just the subset that might be checkable from a log of selected variables and events. In addition, continuous checking
during a mission can provide early warning to ground operations when something unexpected is happening —
whether due to hardware or software failure. This changes the concept of system testing from “checking the log files”
to one of embedded real-time behavior monitoring, from development through deployment. This approach truly
implements a maxim of flight software engineering: “test what you fly and fly what you test’. The concept of
embedded auditors is not a new idea; the call-processing software in AT&T’s highly reliable (and autonomous) #4
Electronic Switching System of the 1960s contained embedded auditors that alerted engineers to software
misbehavior.

Tspec Language
The auditors are generated from specifications of expected/acceptable behavior written in a little language named
Tspec. Tspec provides a few simple constructs for expressing common forms of discrete-event behavior
expectations. These specifications are written in a notation that is more intuitive to spacecraft system engineers and
software designers/developers than linear temporal logic. The Tspec language currently offers four intuitive
constructs—invariants, state machines, episodes, and resource constraints—described below.

e [Invariant. An invariant is a logical condition that should always be true. Invariants, as well as pre-conditions
and post-conditions, are particularly useful in verification because they are generally much easier to specify than
the application logic that is supposéd to enforce them. The invariant below specifies a camera safety
requirement; never allow the lens cover to be open when the cone angle between the camera boresight and the
sun vector is less than 0.1 radian. The associated auditor evaluates the invariant condition every time any of its
variables (lensCoverOpen and sunConeAngle) is updated; if the invariant is violated the auditor generates a
notification. Unlike inline tests such as C ‘assert’ macros, invariant specifications are not position-sensitive in
the application code due to the way that variables are instrumented.

invariant NoSunInCamera (lensCoverOpen, sunConeAngle) {
never (lensCoverOpen && sunConeAngle < 0.1)

}

e State machine. State machines specify valid behavior for a potentially infinite sequence of state transition
activity. The state machine specification below specifies constraints on a traffic light controller’s behavior in
terms of legal transitions, state durations, and expected transition rate. The associated auditor checks these
constraints every time the state variable (color) is updated. The auditor reports violations such as a green-to-red

transition, or a red state duration less than 15 seconds, or a transition rate of more than 10 transitions in any 300-
second interval.

statemachine TrafficLight (color) {

transitions {
red -> green,
green -> yellow,
yvellow -> red

}

limits {
duration(red,
duration(green,
duration(yellow,
rate(4, 10, 300)

15, 60)
11, 58)
2, 4)

Episode. An episode specifies a fragment of behavior having a beginning event and ending event, with any
number of intermediate events. The episode specification below specifies requirements on a science
measurement activity in terms of an expected sequence of steps, required conditions, and timing constraints. The
associated auditor checks the progress of the episode every time one of its variables is updated. The auditor
reports violations such as an out-of-sequence update (e.g. SAVED precedes FULL), a required condition that
became false (e.g. power != ON), or a duration between the first and last steps that exceeds the maximum
duration (e.g., more than 150 seconds). Episodes that remain unfinished at the end of a test run are also reported.

episode MeasureField (inst_state, SSR_state, power) {

steps {

update(inst_state, READING)
update(inst_state, FULL)
update(SSR_state, SAVED)

}
require {
power == ON
}
limits {
duration(90, 150)
end_begin_delay(60,
}

infinity)

}

Resource. Resource specifications state the type and amount of resources available and the conditions under
which they are consumed. A violation occurs if a resource limit is exceeded. Resources are divided into
“depletable” (e.g., propellant) and “renewable” (e.g., power from a solar panel). The example below specifies
the total amount of electrical power (150 watts) and two conditions under which that power is consumed (e.g.,
the camera draws 6 watts when it is powered on). With additional “when-consume” statements that detail the
amount of power consumption implied by specific states, the associated auditor would report if the aggregate
state of the system ever implies greater than 150 watts of power consumption.

resource power {
options {

}

Renewable = yes;

Quantity = 150;
}
when (xsspa_pwr == ON) then consume (power, 45);
when (camera_pwr == ON) then consume (power, 6);

Instrumenting the Code

Tspec specifications are compiled into a conventional programming language (e.g. C++) which is then compiled and
linked in with the operational software. Obviously, the operational software must be instrumented so that the
behavior auditing code has access to the required variables. In an object-oriented design this can be accomplished in
an unobtrusive way through the Observer design pattern (Gamma, 1994). This mechanism provides loose coupling
between operational code and auditor code, with no change in operational code as auditor code is inserted or
removed. In fact, the Tspec language provides for the definition of observable variables that are compiled into C++
classes. The operational code may then use these class objects—through set and ger methods—in place of defining
the classes by hand in C++.

Currently, Tspec specifications are being compiled into C++ for embedding in software for the X-33 Avionics Flight
Experiment at JPL. In this experiment the auditors will be checking behavior visible in a telemetry stream.

Software Development Practices

Software development practice should change in two important ways. First, the concept of “software delivery”
should be expanded to include not only the operational code but also the associated verifiable behavior
specifications. When a developer is given initial requirements for a software subsystem, he/she should begin by
expressing those requirements as verifiable behavior specifications. In effect, we encourage designer-developers
toward a “left-brain/right-brain” split where the left brain thinks about how to specify behavior of a subsystem while
the right brain thinks about how to implement the desired behavior.

Also, test engineers should conduct inspections of the behavior specifications. Behavior specifications are
significantly shorter and easier to understand than operational code, so this type of inspection is more approachable
than a formal code inspection. Such inspections help ensure that developers have adequately specified the expected
behavior and thereby reduce the chance of undetected errors. Developers should be praised when their behavior
specifications detect misbehavior; early-automated detection makes the debugging job vastly easier.

LIMITATIONS

This paper has focused on run-time verification of an implemented system, which stands in contrast to analytic
verification where design-time models are logically/exhaustively checked for undesired behaviors. On the positive
side, run-time verification is applied to the implemented system rather than to a design model. This enables run-time
checking to detect implementation errors, and it enables checking of behavior at a much more detailed level (since
tractable models for model checking are typically an abstraction of the design). On the negative side, behavior is
checked during system execution and is therefore limited to the relatively few traces that get exhibited during
scenario-based system testing and actual operation. Thus, run-time verification should be viewed as a partner to
design-time model checking, not as an alternative.

RELATED WORK

Tspec’s auditors are termed oracles in the larger field of specification-based testing (Richardson, 1992). As
Richardson et al emphasize, oracles for reactive systems must consider not only functional but also timing and safety
requirements, and different computational paradigms must often be used to specify such systems. Tspec’s constructs
are just four of potentially many kinds of behavioral specifications, and their format is intended more for user
understandability/simplicity than for expressive generality.

Temporal Rover (Time-Rover, 1998) is a product intended for formal testing of reactive systems based on temporal
logic specifications. Using temporal logic’s future operators such as ‘Next’, ‘Always’, ‘Sometime’, and ‘Until’'—
written as (), [1, <>, and U, respectively—safety and liveness properties can be expressed as stylized comments in
source files. The source files are then preprocessed to convert the comments into source language statements, and
then the resulting source files are compiled in the ordinary way. Whenever execution passes through a commented
area, the inserted code is executed to check for violation of specified properties. Tspec differs from Temporal Rover

in two primary ways. First, the Tspec language deliberately does not emphasize temporal logic operators because it
was felt that such constructs would be less intuitive to the intended audience of spacecraft engineers than constructs
such as invariants, state machines, and episodes. Second, Tspec relies on an Observer design pattern (Gamma, 1994)
to ensure that a specification gets reevaluated every time any of its variables changes value. This allows behavioral
specifications to be cleanly separated from implementation and eliminates the need to duplicate a specification every
place where any of its variables get updated.

SUMMARY

The architecture of executive control software for spacecraft is changing from that of timed sequencers to goal-
driven multi-threaded closed-loop reactive control systems. With numerous concurrent, interacting closed-loop
control systems operating at different time scales, such systems exhibit very complex behaviors that are impractical
to verify using transaction-oriented testing on uplink/downlink channels and very difficult to verify through manual
inspection of execution logs. It’s more helpful to recognize that much of the run-time verification of control systems
can be automated—and even performed in real-time—by embedded behavior auditors that track observed behavior
against models of expected behavior. Such models can vary widely in type (e.g., discrete-event, continuous
dynamics, stochastic) and level of detail, but in all cases they express requirements in a directly verifiable form. In
practice, these embedded behavior auditors become part of a spacecraft’s overall fault-detection design, deliberately
blurring the distinction between pre-launch testing and in-flight monitoring.

This paper has illustrated the concept of embedded behavior auditors through a small language and library, named
Tspec, that allows system engineers and designers to specify expected and acceptable behavior in the form of
invariants, state machines, episodes, and resource constraints. Just as pre-conditions and post-conditions in Eiffel
check an object’s run-time behavior against a design contract (Meyer, 1997), so also do Tspec’s testable
specifications define and check for contract violations. Importantly, the very existence of such contractual behavior
specifications in a project encourages a form of code inspection where only the comparatively brief behavior
specifications are inspected for accuracy and coverage rather than a comparatively large body of operational code.

ACKNOWLEDGEMENTS

This paper describes work carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. Kirk Reinholtz contributed many formative ideas
that shaped this work.

REFERENCES

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of Reusable Object-Oriented Software, Addison
Wesley, 1994.

Harel, D., “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer Programming 8, 231-274 (1987).

Lowry, M., Havelund, K., and Penix, J., “Verification and Validation of Al systems that Control Deep-Space Spacecraft,” in
Foundations of Intelligent Systems, Proc. ISMIS-97: 10th Int’l Symp. Methodologies for Intelligent Systems, Lecture Notes
in Artificial Intelligence, No. 1325, Springer-Verlag, 1997.

Meyer, B., Object-Oriented Software Construction, Second Edition, Prentice Hall, 1997.

Perrow, C., Normal Accidents: Living with High-Risk Technologies, New York, Basic Books, 1984, pp. 72-100.

Richardson, D., Aha, S. L., and O’Malley, T. O., “Specification-Based Test Oracles for Reactive Systems,” in Proc. 14th Int’l
Conf. Software Eng., IEEE Computer Society Press, Los Alamitos, Calif., 1992, pp. 105-118.

Rosenblum, D. S., “A Practical Approach to Programming with Assertions,” IEEE Transactions on Software Engineering, 21(1),
19-31 (1995).

Time-Rover Corp., “The Temporal Rover,” http://www.time-rover.com (1998).

